Drinking Water Quality

Moulton Niguel Water District (MNWD) is pleased to report that once again, through safe and effective treatment, the drinking water provided by the District meets and exceeds the standards required by state and federal regulatory agencies.

The following information provides a review of water quality for 2011. Included are details about where your water comes from, what it contains, and how it compares to state standards. We are committed to providing you with factual information, because informed consumers are our best customers.

The United States Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) are the agencies responsible for establishing drinking water quality standards. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the Department of Public Health prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

What
Sources ofThe sources of
rivers, lakes, s
occurring min
up substances
activity. Your of
State Water P
Bay Delta. Ead
water travels
MetropolitanYour water is f
MWDSC and
system. Moult
water to your

What You Need to Know Sources of Supply

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturallyoccurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Your drinking water originates from the Colorado River and the State Water Project, which draws water from the Sacramento-San Joaquin Bay Delta. Each water source has unique water quality challenges. The water travels hundreds of miles through an intricate delivery system of the Metropolitan Water District of Southern California (MWDSC).

Your water is treated at the Diemer Filtration Plant in Yorba Linda by MWDSC and delivered to the Moulton Niguel Water District distribution system. Moulton Niguel's pipelines and reservoirs are utilized to deliver the water to you when and where it is needed.

June 2012

Drinking Water and Your Health

Protecting Water Quality at the Source

Every five years, Metropolitan Water District of Southern California is required by CDPH to examine possible sources of drinking water contamination in its State Water Project and Colorado River

source waters. Metropolitan is in the process of finalizing its 2010 updates to the Watershed Sanitary Surveys for the Colorado River and State Water Project, which include suggestions for how to better protect these source waters. Both source waters are exposed to stormwater runoff, recreational activities, wastewater discharges, wildlife, fires, and other watershedrelated factors that could affect water quality. Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. USEPA also requires Metropolitan to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. Metropolitan completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed. A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling Metropolitan at (213) 217-6850.

rinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (800) 426-4791.

Contaminants that may be present in source water include:

• Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

• Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

• Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

• Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

• Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Precautions for Some to Consider

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

Some contaminants are known to cause problems for people with weakened immune systems. This is the case with a microscopic parasite called "*Cryptosporidium*" which can cause a life-threatening infection.

Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Although filtration removes *Cryptosporidium*, the most commonly-used filtration methods cannot guarantee 100 percent removal. Our monitoring indicates the presence of these organisms in our source water and/or finished water. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of *Cryptosporidium* may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immuno-compromised people, infants and small children, and the elderly are at greater risk of developing life-threatening illness. We encourage immuno-compromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. *Cryptosporidium* must be ingested to cause

disease, and it may be spread through means other than drinking water.

USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800) 426-4791.

Current Water Issues

Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Moulton Niguel Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Chloramines

Moulton Niguel Water District imports all its water from MWDSC. The imported water supply is treated with chloramines, a combination of chlorine and ammonia, as the drinking water disinfectant. In addition MNWD treats its stored water with chloramines. Chloramines are effective killers of bacteria and other microorganisms that may cause disease. Chloramines form less disinfection byproducts and have no odor when used properly. People who use kidney dialysis machines may want to take special precautions and consult their physician for the appropriate type of water treatment. Customers who maintain fish ponds, tanks or aquariums should

also make necessary adjustments in water quality treatment, as these disinfectants are toxic to fish. For further information or if you have any questions about chloramines please call MNWD at (949) 831-2500

Water Hardness

Levels of calcium and magnesium, which occur naturally in water, are the primary substances that determine whether water is hard or soft. Water from the Colorado River, Moulton Niguel's primary source of water,

contains fairly high levels of these minerals and is considered "hard." Water hardness does not affect health. However, hard water does require more soap than soft water and will, over time, leave mineral deposits on plumbing fixtures. In 2011, the hardness found in your water averaged 190 parts per million or 11 grains per gallon.

Fluoride

Fluoride has been added to U.S. drinking water supplies since 1945. Of the 50 largest cities in the U.S., 43 fluoridate their drinking water. In December 2007, the Metropolitan Water District of Southern California joined a majority of the nation's public water suppliers in adding fluoride to drinking water in order to prevent tooth decay. In line with recommendations from the CDPH, as well as the U.S. Centers for Disease Control and Prevention, Metropolitan adjusted the natural fluoride level in imported treated water from the Colorado River and State Project water to the optimal range for dental health of 0.7 to 1.3 parts per million. Fluoride levels in drinking water are limited under California state regulations at a maximum dosage of 2 parts per million.

There are many places to go for additional information about the fluoridation of drinking water.

United States Centers for Disease Control and Prevention 1-800-232-4636 www.cdc.gov/fluoridation/

California Department of Public Health www.cdph.ca.gov/certlic/drinkingwater/Pages/Fluoridation.aspx

American Water Works Association www.awwa.org

For more information about Metropolitan's fluoridation program, please contact Edgar G. Dymally at (213) 217-5709 or at edymally@mwdh2o.com.

Moulton Niguel Water District Distribution System Water Quality 2011

Disinfection By Product	MCL (MRDL/MRDLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Contaminant
Total Trihalomethanes (ppb) (a)	80	53.1	36.0 - 66.8	No	Byproducts of Chlorine Disinfection
Haloacetic Acids (ppb) (b)	60	30.5	22.3 - 39.8	No	Byproducts of Chlorine Disinfection
Chlorine Residual (ppm)	4/4	2.2	0.3 - 3.0	No	Disinfectant Added for Treatment
Aesthetic Quality					
Color (color units)	15*	<5	ND -<5	No	Erosion of Natural Deposits
Odor (threshold odor number)	3*	0.8	0.5 - 2.0	No	Erosion of Natural Deposits
Turbidity (NTU) (c)	5*	0.16	.0842	No	Erosion of Natural Deposits

12 locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids; 52 samples are tested monthly for color, odor, and turbidity. < = less than detection limit for reporting purposes; **MRDL** = Maximum Residual Disinfectant Level; **MRDLG** = Maximum Residual Disinfect

Bacterial Quality	MCL	MCLG	Highest Monthly % Percent Positives	MCL Violation?	Typical Source of Contaminant
Total Coliform Bacteria (d)	5%	0	0.63	No	Naturally Present in the Environment

No more than 5% of the monthly samples may be positive for total coliform bacteria. The occurrence of two consecutive total coliform positive samples, one of which contains fecal coliform/E. coli, constitutes an acute MCL violation. A system is in non-compliance if more than 5% of samples collected on a given month have Heterotrophic Plate Counts greater than 500 colony forming units per milliliter and no detectable chlorine residual.

Lead and Copper Action Levels at Residential Taps								
	Action Level (AL)	Health Goal	90th Percentile Value	Sites Exceeding AL / # of Sites	AL Violation?	Typical Source of Contaminant		
Lead (ppb)	15	0.2	2.1	0/51	No	Corrosion of household plumbing		
Copper (ppm) (e)	1.3	0.3	0.21	0/51	No	Corrosion of household plumbing		

Every three years, 51 selected residences are tested for lead and copper in-the-tap. The most recent set of samples were collected in September 2009. Lead was detected in one residence; zero exceeded the regulatory Action Level (AL). Copper was detected in 37 residences; zero exceeded the regulatory Action Level. A regulatory Action Level is the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Alternative Resources

The Metropolitan Water District of Southern California operates the Robert B. Diemer Water Treatment Plant in Yorba Linda, which treats water delivered to our region from Northern California and the Colorado River before it is delivered to water providers including MNWD, and then to our customers. The Diemer Plant closes annually to undergo extensive maintenance to the facility's treatment and disinfection systems. MNWD relies upon our neighboring agencies and our investments into water reliability projects to be able to provide drinking water throughout our service area during planned shutdowns or emergencies. During the 2011 shutdown, MNWD received water from Irvine Ranch Water District (IRWD). If you would like more information regarding IRWD's Distribution System's Water Quality, please contact Lars D. Oldewage at (949) 453-5858.

Abbreviations

		MCLG	Maximum Contaminant Level Goal	NTU	Nephelometric Turbidity Units
AI	Aggressiveness Index	MRDL	Maximum Residual Disinfectant Level	pCi/L	picoCuries per Liter
AL	Action Level	MRDLG	Maximum Residual Disinfectant Level Goal	PHG	Public Health Goal
CFU	Colony Forming Units	N	Nitrogen	ppb	parts per billion or micrograms per liter (µg/L)
DLR	Detection Limits for Purposes of Reporting	NA	Not Applicable	ppm	parts per million or milligrams per liter (mg/L)
MCL	Maximum Contaminant Level	ND	Not Detected	ppt	parts per trillion or nanograms per liter (ng/L)

2011 Metropolitan Water District of Southern California Treated Surface Water

Chemical	MCL	PHG (MCLG)	DLR	Average Amount	Range of Detections	MCL Violation?	Typical Source of Contaminant
Radiologicals							
Gross Alpha Particle Activity (pCi/L) Gross Beta Particle Activity (pCi/L) (f Uranium (pCi/L)	15) 50 20	(0) (0) 0.43	3 4 1	3 ND 2	ND - 3 ND - 4 2	No No No	Erosion of Natural Deposits Decay of man-made or Natural Deposits Erosion of Natural Deposits
Inorganic Chemica	.1s						
Aluminum (ppm) (e) Fluoride (ppm) treatment-related(g) Fluoride (ppm) naturally-occurring (g) Nitrate (as N) (ppm) (h)	1 Control Ran 0.7–1.3 ppn 2.0 10	.6 ge n Optimal Leve 1 10	.05 0.1 10.8 ppm 0.1 0.4	.14 0.8 0.2 ND	ND - 0.24 0.5- 1.0 0.1 - 0.3 ND- 0.4	No No No	Residue from Water Treatment Process; Natural Deposits Erosion Water Additive for Dental Health Erosion of Natural Deposits Runoff and Leaching from Fertilizer Use; Septic Tank and Sewage; Natural Deposits Erosion
Secondary Standar	ds						
Aluminum (ppb) (e) Chloride (ppm) Color (units) Odor Threshold (TON) Specific Conductance (µs/cm) Sulfate (ppm) Total Dissolved Solids (ppm) Turbidity (NTU)	200* 500* 15* 3* 1,600* 500* 1,000* 5*	600 N/A N/A N/A N/A N/A N/A	50 N/A 1 N/A 0.5 N/A N/A	140 72 1 2 690 160 470 0.05	ND - 240 70 - 75 1 2 320 - 960 150 - 170 440 - 490 0.03 - 0.25	No No No No No No	Residue from Water Treatment Process; Natural Deposits Erosion Runoff/Leaching from Natural Deposits; Seawater Influence Naturally-occurring Organic Materials Naturally-occurring Organic Materials Substances that Form Ions in Water; Seawater Influence Runoff/Leaching from Natural Deposits; Industrial Wastes Runoff/Leaching from Natural Deposits; Seawater Influence Soil Runoff
Unregulated Chem	icals						
Alkalinity (ppm) Boron (ppb) Calcium (ppm) Corrosivity (as Aggressiveness Index) (i) Hardness (ppm) Hardness, total (grains/Gal) Magnesium (ppm) pH (pH units) Potassium (ppm) Sodium (ppm) TOC (ppm)	N/A NL = 1,000 N/A N/A N/A N/A N/A N/A N/A TT	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 100 N/A N/A N/A N/A N/A N/A N/A 0.30	90 130 51 12.1 190 11 20 8.0 3.8 72 2.4	48 - 120 130 $47 - 55$ 12.1 $57 - 270$ $3 - 16$ $19 - 21$ $7.0 - 8.6$ $3.6 - 4.0$ $67 - 77$ $1.7 - 3.0$	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Runoff/Leaching from Natural Deposits; Industrial Wastes Elemental balance in water; affected by temperature, other factors Runoff or Leaching from Natural Deposits Various Natural and man-made sources

ppb = Parts-per-billion; ppm = parts-per-million; pCi/L= picocuries per liter, ntu = nephelometric turbity units, µmho/ca = micromhos per centimeter, ND = not detected; < = average is less than the detection limit for reporting purposes; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = Public Health Goal; NA = not applicable; TT = treatment technique. * Contaminant is regulated by a secondary standard.

Turbidity- combined filter effluent	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Contaminant
1) Highest single turbidity measurement	0.3 NTU	0.08	No	Soil Runoff
2) Percentage of samples less than 0.3 NTU	95%	100%	No	Soil Runoff

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT). A treatment technique is a required process intended to reduce the level of contaminants in drinking water that are difficult and sometimes impossible to measure directly.

Footnotes

a. Metropolitan's reporting level is 0.5 ppb for each of the trihalomethanes (bromodichloromethane, bromoform, chloroform, and dibromochloromethane) which is lower than the State DLR of 1 ppb. Twelve locations in the distribution system are tested quarterly for total trihalomethanes.

b. State DLR is 1.0 ppb for each of the following: dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid; and 2ppb for monochloroacetic acid.

c. The turbidity level of the filtered water shall be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1 NTU at any time. Turbidity is a measure of the cloudiness of the water, is an indicator of treatment performance. The averages and ranges of turbidity shown in the Secondary Standards were based on the treatment plant effluent.

d. Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform-positive. Compliance is based on the combined distribution system sampling. In 2011, 1,612 samples were analyzed and one sample was positive for total coliforms. The MCL was not violated.

e. Aluminum and copper have both primary and secondary standards.

f. CDPH considers 50 pCi/L to be the level of concern for beta particles; the gross beta particle activity MCL is 4 millirem/ year annual dose equivalent to the total body or any internal organ.

g. Metropolitan was in compliance with all provisions of the State's Fluoridation System Requirements.

h. State MCL is 45 mg/L as nitrate, which is the equivalent of 10 mg/L as N.

i. Al <10.0 = Highly aggressive and very corrosive water Al > 12.0 = Non-aggressive water Al (10.0 - 11.9) = Moderately aggressive water

Moulton Niguel's Water Quality Data

The tables on the previous pages list all the drinking water contaminants that we detected during the 2011 calendar year. The presence of these contaminants in water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented is from testing done from January 1 through December 31, 2011. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Your water is tested for more than 100 required constituent substances and is continually monitored to ensure that it meets all state and federal standards. Only those substances that were detected have been listed in the tables. All of the contaminants fall within the state and federal standards to ensure your water is safe to drink.

Maximum Contaminant Level (MCL)

The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the public health goals and maximum contaminant level goals as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG)

The level of contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (EPA).

Primary Drinking Water Standard (PDWS)

MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Public Health Goal (PHG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. Public health goals are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL)

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Regulatory Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions

Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

If you have any questions, please contact us for answers....

For information about your water quality or to find out about upcoming opportunities to participate in public meetings, please contact the Customer Service Department at (949) 831-2500.

You may also contact us at 27500 La Paz Road, Laguna Niguel, California, 92677.

Additional information, including copies of this report, can be found on our website at www.MNWD.com.

For more information about health effects of the listed constituents in the following tables, call the USEPA hotline at (800) 426-4791.